摘要
目的 以某汽车内饰板为研究对象进行虚拟制造,以提前得到相对准确的工艺参数并减少成形缺陷的产生。方法 研究了工艺参数对产品拉延成形质量的影响,并确定了拉丁超立方抽样区间,在抽样区间内抽取60组样本数据,以最大减薄率为目标值,以前50组样本数据为测试集、后10组样本数据为预测集,使用基于GA–BP神经网络的遗传算法得到最优工艺参数,并将其代入有限元分析软件DYNAFORM中进行虚拟制造。结果 训练后GA–BP模型的预测值与期望值最大误差为0.299 7%,最大预测误差率为1.747 38%;遗传算法预测的最大减薄率为16.548%,虚拟制造得到的减薄率为16.167%,虚拟制造值与预测值的大小仅相差0.318%,仿真误差的误差率为2.36%。结论 虚拟制造结合先进算法的优化方法可以指导后续生产。
-
单位机电工程学院; 郑州轻工业大学