摘要
选择合适的变量筛选方法和模型可有效提升土壤有机质含量的估测精度。本研究以新疆渭干河-库车河绿洲为研究区,基于哨兵2号(Sentinel-2)卫星影像和实测土壤有机质,通过对土壤有机质与遥感影像波段及多种光谱指数进行相关分析,结合Boruta算法和连续投影算法(Successive Projections Algorithm, SPA)进行变量筛选,构建随机森林(Random Forest, RF)模型和BP神经网络(Back Propagation Neural Network, BPNN)模型进行表层土壤有机质含量的估测。结果表明:(1)波段B3、B4、B5、B7和B8A以及转换植被指数(Transformed Vegetation Index, TVI)、颜色指数(Color Index, CI)对土壤有机质含量的估测具有重要作用;(2)单独使用Boruta算法和SPA算法筛选的变量集建模效果要优于全变量集以及结合算法筛选的变量集,Boruta算法优于SPA算法;(3)RF模型的估测能力优于BPNN模型,最优估测模型训练集和验证集的决定系数(R2)均大于0.74,模型拟合效果较好,均方根误差(RMSE)小于2.0 g/kg,相对分析误差(RPD)大于1.6,能够较好地进行土壤有机质含量的估测。采用Boruta算法结合随机森林模型可较好地反演绿洲表层土壤有机质的空间分布,为该区域土壤养分评价提供参考。
- 单位