摘要

随着大数据时代的到来,P2P网络借贷的数据规模日益庞大,导致P2P网络借贷信用风险比传统的金融借贷信用风险更加难以预测,使得大量的P2P机构面临倒闭.文章运用美国Lending Club网站2017-2018年的数据,采取两步子抽样方法抽取样本,建立logistic回归模型对P2P网络借贷信用风险进行预测.研究结果表明:P2P网络借贷信用风险与借款人的年收入、FICO得分、贷款金额等多种因素有关;基于两步子抽样方法建立的logistic回归模型在P2P网络借贷信用风险预测方面优于基于简单随机抽样方法建立的logistics回归模型.