摘要
复杂环境下现有的车辆检测算法容易受尺度变化、遮挡以及复杂背景等因素影响,检测效果不理想,提出了一种融合全局和局部深度卷积特征的车辆检测算法。基于卷积神经网络构建车辆检测网络模型,通过建立多尺度感兴趣区域池化层(ROIPooling)获得图像整体结构和上下文信息,提取出目标的全局特征,并利用位置敏感感兴趣区域池化层(PSROIPooling)提取出目标局部特征,在全连接层处对全局和局部特征进行加权融合,最后通过多任务学习联合预测出车辆位置和类别。实验结果表明全局和局部特征具有较好的互补性,与多种主流检测算法相比,本算法具有更强的鲁棒性和准确性。
- 单位