摘要

合成孔径雷达(Synthetic Aperture Radar,SAR)在对地面目标进行观测时,可以在多个不同的方位角获取到目标的SAR图像,但这些图像中目标的形态各不相同。考虑到SAR图像对观测方位角极其敏感和SAR图像数据规模小这两个因素,本文设计了一个利用多方位角SAR图像进行目标识别的卷积神经网络(Convolutional Neural Network,CNN),同一目标的3幅SAR图像被当作一幅伪彩色图像输入到网络中,充分利用了SAR图像数据的获取特点,同时用池化层替代了展平操作,降低了网络参数数量。实验结果表明,即便在小规模SAR数据集上,该卷积网络具有识别精度高的特点,对同类别不同型号的目标也具有出色的识别表现。

全文