摘要

图形处理器(GPU)因其高并发和高吞吐量的特性被广泛应用于大数据和人工智能等高性能计算领域,随着超大规模集成电路技术的发展,片上集成的处理单元越来越多,高功耗在增加设备运行成本的同时,降低电池的使用时间和集成电路芯片的可靠性。针对功耗问题,提出一种基于数据依赖的GPU功耗管理方法(DDPM),通过优化线程分配和缓存置换策略减少GPU系统功耗。实验结果表明,DDPM相较于共享感知数据管理方法,L1缓存命中率提高了7%,DRAM数据传输量降低了8.1%;MC-aware-ORI,MC-aware-LoSe,MC-aware-SiOb方法能效分别提高了2.7%,2.65%,8.67%。