摘要

为进行轴承剩余寿命(Remaining Useful Life, RUL)预测,采用小波-谱峭度分析方法,首先对轴承振动序列信号进行小波包分解,并以谱峭度作为指标,确定故障特征频带并进行信号重构,然后,根据其频谱特征判断轴承是否发生故障,最终确定轴承振动序列信号的初始故障点(Incipient Fault Point, IFP)。在此基础上,将引入注意力(Attention)机制的一维深度可分离卷积神经网络用于轴承初始故障点之后振动信号特征的提取,相比传统卷积神经网络,深度可分离卷积层可减少网络训练参数个数,加快网络训练速度。实验结果表明,注意力机制的引入使网络能够聚焦信号中关键的特征,为重要特征赋予较大权重,避免人工处理特征的不足,利于有效特征提取,最终预测结果好于SVR、CNN、RNN等常用数据驱动方法。

全文