摘要

提出一种基于改进Faster R-CNN(region-convolutional neural networks)的车辆识别算法,用于处理不同类别车辆的识别问题.为了解决部分外形相似类别的车辆之间的误检问题,该方法使用空洞卷积来提高感受野,结合空洞空间金字塔池化(atrous spatial pyramid pooling,简称ASPP)来增强多尺度信息的获取,以此来增强网络对外形相似车辆之间差异的敏感性,提升算法的准确率.实验结果表明,改进的Faster R-CNN模型mAP值达到93.45%,具有较高的精确度、较小的误检率和更好的鲁棒性.