摘要

针对无迹卡尔曼滤波算法(UKF)估算锂电池荷电状态(SOC)存在的精度低、稳定性差的问题,在二阶模型的基础上,提出一种基于奇异值分解(SVD)的改进无迹卡尔曼滤波算法。建立锂电池的数学模型,通过带遗忘因子的最小二乘法(FFRLS)得到电池模型参数,将辨识出的模型参数实时导入改进UKF算法中,估计锂电池的荷电状态,并与UKF进行比较。在DST工况下,通过仿真实验可知,与UKF相比,SVD-UKF算法的AAE降低3.29%,RMSE降低3.78%。实验结果表明,改进算法的SOC估算精度和自适应性能更高。