基于3D增强CT影像组学的肾癌亚型三分类预测模型

作者:张海捷; 殷夫; 陈梦林; 漆安琪; 杨丽洋; 崔维维; 杨姗姗; 文戈
来源:分子影像学杂志, 2021, 44(03): 427-434.
DOI:10.12122/j.issn.1674-4500.2021.03.03

摘要

目的探讨可靠的基于3D多期增强CT影像组学特征的肾癌亚型三分类预测模型。方法 210例肾细胞癌患者(透明细胞癌143例,乳头状癌25例,嫌色细胞癌29例,其他亚型的肾细胞癌13例)被纳入研究。使用ITK-SNAP软件,获取患者的3D增强CT病灶分割图像,使用PyRadiomics计算平台进行特征提取,使用集成学习分层bagging法来筛选特征和构建肾细胞癌亚型三分类预测模型:首先用100次5折交叉验证将模型分为训练集和测试集,然后将Lasso回归作为基学习器对影像组学特征的进行筛选,最后使用logistic回归作为基学习器进行建模和校正。根据不同期像的CT图像,构建平扫期模型、皮髓质期模型、实质期模型、排泄期模型和全期模型。使用准确率、精确率、敏感度和Kappa值评估测试集上不同期像预测模型的性能。结果每期CT图像中提取到了105个影像组学特征。在5个模型中,全期模型的预测效能最好,准确率为0.81,AUC为0.85;精确度为0.717;敏感度为0.799,kappa值为0.679。全期模型的影像组学特征中,有4个皮髓质期特征、3个实质期特征、1个排泄期特征和1个平扫期特征,且与其他4个单期模型中的特征没有重叠。在4个单期模型中,实质期模型的性能最好,准确性0.786,精确度0.689,敏感度0.734,AUC 0.811,Kappa值0.532;皮髓质期模型和排泄期模型的性能相似,但是排泄期模型的Kappa值0.285,明显低于皮髓质期的Kappa值0.446。平扫期模型的性能最差,AUC为0.693。结论基于3D多期增强CT影像组学特征的全期模型是区分肾细胞癌亚型的可靠和有效的方法。

全文