摘要
针对瓦斯灾害危险性预测中预测性能低的问题,对一种基于矿井内瓦斯浓度与环境因素相关性分析的瓦斯灾害选择集成预测方法进行了研究。首先,分析实验数据中样本属性与瓦斯浓度的相关性,并根据相关性分析结果进行属性约简得到新的数据集;其次,训练基学习器并应用优化集成前序选择方法建立选择集成回归学习模型;最后,将模型应用于瓦斯灾害预测。实验结果表明,基于相关性分析的选择集成回归学习模型对瓦斯灾害危险性的识别率比未进行相关性分析的四个基学习器平均提高了24%,比未进行相关性分析的选择集成回归学习模型提高了7. 6%。
- 单位