摘要
针对医学图像具有很高的特征维度和非常大的交叉性及相似性、极其容易造成类别归属混乱、导致医学图像多类别分类精度普遍较低的问题,首先提出了一种惯性权重自适应的粒子群算法,并以此为基础引入交叉算子提出一种混合优化算法.然后,采用中值滤波法、直方图均衡化方法对医学图像进行去噪、图像增强等预处理.最后运用改进后的混合粒子群算法集成SVM、KNN、Ada Boost分类器对医学图像进行特征分类研究.试验表明,本文算法的分类结果无论是直接特征提取,还是SIFT特征提取,相对于传统的分类器多类别分类准确率都有所提升;针对MIAS数据集,多类别分类相比于现有的分类算法有明显的精度提升.
-
单位贵州民族大学