基于块对角化表示的多视角字典对学习

作者:张帆; 贺文琪; 姬红兵; 李丹萍; 王磊*
来源:计算机科学, 2021, 48(01): 233-240.
DOI:10.11896/jsjkx.200800211

摘要

字典学习作为一种高效的特征学习技术被广泛应用于多视角分类中。现有的多视角字典学习方法大多只利用多视角数据的部分信息,且只学习一种类型的字典。实际上,多视角数据的相关性信息和多样性信息同样重要,且仅考虑一种合成型字典或解析型字典的学习算法不能同时满足处理速度、可解释性以及应用范围的要求。针对上述问题,提出了一种基于块对角化表示的多视角字典对学习方法(Block-Diagonal Representation based Multi-View Dictionary-Pair Learning,BDR-MVDPL),该方法通过引入字典对学习模型获得包含更多对分类有用的信息的表示系数,并通过显式约束使其具有块对角化结构,保证了编码系数矩阵的判别性;然后采用特征融合的方式将所有视角的编码系数进行串联,并将串联后的编码系数回归到对应的标签向量上,使多视角数据的多样性信息和数据相关性能够同时被利用;最后,该算法将字典学习与分类器学习整合到一个框架中,采用迭代求解的方式,交替更新字典对和分类器,使所提方法能够自动完成分类。3个多特征数据集上的实验结果表明,与主流的多视角字典学习算法相比,所提算法在保持低复杂度的同时具有更高的分类准确率。

全文