摘要
为探索科学预测区域交通用地需求的合理途径,指导国土空间规划编制中交通用地规模的划定,拟通过灰色-BP神经网络模型识别主要社会经济影响因素,以长江中游城市群为例,在预测其远景交通用地需求规模的同时,基于城市群发展的阶段特征选取典型城市群样本设置3类情景,对不同情景下的交通用地需求分别进行预测。结果表明:1)城镇化水平、产业结构高度化程度和劳动力资源禀赋是当前影响长江中游城市群交通用地需求的主要社会经济因素。2)通过系统仿真试验对比不同方法的交通用地需求预测结果,可以发现基于灰色-BP神经网络模型的预测方法精度较高,误差较小,该预测方法对于区域交通用地规模的预测具有一定的适用性。预测得到的长江中游城市群2020和2030年交通用地需求分别为31.22万和49.07万hm2。3)不同情景下长江中游城市群交通用地需求预测结果存在明显差异,底线情景可作为划定交通用地规模的底限,一般情景可作为基准,极限情景可作为红线,长江中游城市群交通用地合理规模应以基准为参考,介于底线和红线之间。
- 单位