摘要

针对目标威胁估计有很多不确定性的特点,分析了传统目标威胁估计方法和灰色神经网络初始参数随机选择的不足。采用模拟退火改进的粒子群算法代替梯度修正法,对网络参数初始值进行寻优,并通过该方法搜寻到的最优粒子,建立了基于模拟退火粒子群算法优化的灰色神经网络模型,以提高预测模型的稳健性和精确度。与灰色神经网络和没有改进的粒子群灰色神经网络等方法进行比较,仿真实验结果表明,模拟退火粒子群优化的灰色神经网络具有很好的预测能力,可以准确地完成空中目标威胁估计。

全文