摘要
考虑了一类目标运动模型未知且多传感器异步采样情况下的移动目标定位跟踪问题,提出了一种仅依赖于测量信息的数据驱动目标跟踪定位方法。为了解决运动模型未知的问题,依据测量模型及量测范围设计分布式神经网络结构,进而基于神经网络建立量测数据至状态变量的映射关系。在此基础上,针对多速率多传感器数据的异步问题,引入了一种基于上一量测更新时刻的数据补偿策略,构建以时间差为输入特征的权值网络模型,进而提出一种利用迭代学习逼近真实目标位置的目标定位算法。最后,通过实验对所提出方法的优越性和有效性进行了验证。
- 单位