摘要

对高光谱遥感图像进行分类处理,能够对其中的各种光谱加以高效利用,准确提取地物信息。但是由于分辨率较低,受噪声干扰较严重,导致现有方法对高光谱遥感图像的分类效果不佳,为此,提出基于软阈值的分类方法。为了利于地物提取,方法首先以像元,端元,以及丰度建立L1/2范数模型;然后引入惩罚公式,用于处理由噪声导致的残差;最后分别针对端元,像元,及丰度等参数设计更新公式,并利用目标函数判定其迭代状态,引入交叉验证,对噪声参数与光谱特性采取动态自适应调整。通过实验对比结果,验证提出的软阈值方法具有出色的抗噪声干扰能力,能够更准确的处理光谱差异,有效提升高光谱遥感图像的分类精度。

  • 单位
    山东凯文科技职业学院

全文