摘要
滑坡变形的产生是坡体自身地质条件和外部诱发条件共同作用的结果,滑坡变形定量预测是滑坡监测预警的关键。传统的基于滑坡累计位移-时间曲线分析滑坡变形的方法,忽略了滑坡变形演化的影响因素,难以对滑坡变形进行准确预测。三峡库区滑坡研究多集中在滑坡时空分布特征和滑坡整体稳定性分析方面,亟需开展单体滑坡综合变形分析。以三峡库区白水河滑坡为例,基于滑坡宏观变形和位移监测数据,利用重标方差(rescaled variance statistic, V/S)分析法对滑坡整体和局部变形趋势进行分析,进而构建考虑库水位波动和降雨滞后性影响因素的可有效利用长期依赖信息的长短记忆(long short-term memory, LSTM)神经网络模型,定量预测滑坡位移。研究结果表明,滑坡体属牵引式滑坡,北东部稳定性较差,西部和后缘相对稳定,预测值的均方根误差为8.95 mm,证明该模型是一种高性能的滑坡变形分析方法。
-
单位国土资源部; 中国地质大学(武汉)