摘要

为解决狭小且复杂工作环境下,麦克纳姆轮AGV(Automated Guided Vehicle,自动导引车)最优路径规划问题,提出了一种基于麦克纳姆轮底盘运动学模型改进的A*算法。首先,将麦克纳姆轮AGV等效为二维最小外接矩形,利用其全向移动特性设计路径搜索策略;其次为提高规划路径的安全性,依据模型特征构建了拓展模型避障矩阵;最后引入二维高斯核函数自适应调整算法实际代价函数和启发估计代价函数的权重系数,平衡搜索的全局性和快速性。仿真试验结果表明,改进的算法在搜索时间和安全性能均高于普通算法,提高了麦克纳姆轮AGV通过狭窄空间或转弯死角的能力,增强了路径搜索效率。

全文