摘要

针对红外与可见光图像特征点匹配的难题,提出了一种基于异步多特征的红外与可见光图像匹配算法.首先采用多尺度FAST-9角点检测算法进行特征点提取;而后,对提取的特征点构造主方向;再统计特征点邻域的梯度方向,构造一种类SIFT的特征点描述子;采用阈值宽松的最近邻匹配算法进行粗匹配;然后,提取特征点邻域边缘信息构造基于边缘的形状上下文描述子;最后采用相应的相似性度量算法对粗匹配结果进行提纯.实验结果表明,提出的算法对旋转、尺度、视角变换具有鲁棒性,且能够实现不同天候条件下的图像匹配,正确匹配率较SURF算法有明显提高.

全文