摘要

针对传统识别方法对石榴外表病斑及石榴轮廓检测精准度不高、抗噪声能力不强以及存在伪边缘等问题。该文提出一种基于自适应阈值Prewitt算子的石榴病斑检测算法。采用双边滤波减少噪声干扰;通过高频强调滤波提高图像高频分量,增强局部细节;根据高斯噪声概率分布设置算子卷积掩膜元素权重,利用对称性将方向梯度两两组合,并计算其L2范数作为该像素点的梯度。对人工拍摄的607张石榴图像进行图像增强和边缘检测试验,加入椒盐噪声和高斯噪声进行抗噪性能测试。试验结果表明,该文算法对石榴病斑的识别正确率为98.24%,获得图像的峰值信噪比为43.72 dB,单张图像识别耗时为0.174 s。该研究具有较好的病害样本与非病害样本区分能力,可为田间环境下石榴病害预防提供参考。