摘要

变压器空载合闸的振动信号包含了丰富的机械特征信息,为了实现对变压器绕组松动故障诊断,提出了一种局部均值分解(LMD)边际谱能量熵与烟花算法优化支持向量机(FWA-SVM)的方法。通过LMD提取若干反映变压器合闸过程绕组状态信息的乘积函数(Product Function, PF)分量;依据各PF分量相关系数与能量分布,将前6阶PF分量进行希尔伯特变换,并求取对变压器绕组状态变化敏感的边际谱能量熵作为特征向量;将特征向量输入到烟花算法(FWA)优化的支持向量机(SVM)分类器,实现变压器绕组轻微松动故障早期预警。实验结果表明:基于LMD边际谱能量熵能准确反映故障特征,FWA-SVM诊断方法在少量样本情况下仍有较高的故障辨识度。

  • 单位
    电气学院; 国网江苏省电力公司南京供电公司; 河海大学