摘要

目的遥感图像目标检测是遥感图像处理的核心问题之一,旨在定位并识别遥感图像中的感兴趣目标。为解决遥感图像目标检测精度较低的问题,在公开的NWPUVHR-10数据集上进行实验,对数据集中的低质量图像用增强深度超分辨率(EDSR)网络进行超分辨率重构,为训练卷积神经网络提供高质量数据集。方法对原Faster-RCNN (region convolutional neural network)网络进行改进,在特征提取网络中加入注意力机制模块获取更多需要关注目标的信息,抑制其他无用信息,以适应遥感图像视野范围大导致的背景复杂和小目标问题;并使用弱化的非极大值抑制来适应遥感图像目标旋转;提出利用目标分布之间的互相关对冗余候选框进一步筛选,降低虚警率,以进一步提高检测器性能。结果为证明本文方法的有效性,进行了两组对比实验,第1组为本文所提各模块间的消融实验,结果表明改进后算法比原始Faster-RCNN的检测结果高了12. 2%,证明了本文所提各模块的有效性。第2组为本文方法与其他现有方法在NWPUVHR-10数据集上的对比分析,本文算法平均检测精度达到79. 1%,高于其他对比算法。结论本文使用EDSR对图像进行超分辨处理,并改进Faster-RCNN,提高了算法对遥感图像目标检测中背景复杂、小目标、物体旋转等情况的适应能力,实验结果表明本文算法的平均检测精度得到了提高。