摘要
冬季降水相态及其转变时间的精细化客观预报对提高气象预报和服务质量具有重要的现实意义。利用京津冀地区国家级自动气象站观测资料及网格化快速更新精细集成产品,统计分析了京津冀地区复杂地形下各类降水相态温度和湿球温度平均气候概率的分布差异及不同降水相态时网格化快速更新精细集成产品中可能影响降水相态判断的特征信息。然后将地面观测天气现象资料、复杂地形下降水相态气候特征及高分辨率模式输出产品作为特征向量,分别基于梯度提升(XGBoost)、支持向量机(SVM)、深度神经网络(DNN)3种机器学习方法建立了降水相态的高分辨率客观分类模型,并对同样条件下3种机器学习方法对雨、雨夹雪和雪3种京津冀主要降水相态的预报效果进行了对比检验,进一步提升了雨夹雪复杂降水相态的客观分类预报技巧。