摘要
针对无人机热红外影像与光学卫星影像的匹配难题,提出一种基于异源地标数据集学习的深度局部特征匹配方法。首先,利用生成对抗网络学习热红外与可见光影像的灰度分布规律,并进一步合成用于特征提取模型训练的热红外影像地标数据集;然后,联合残差网络和注意力机制模型,从数据集中学习深度不变特征;最后,经过对不变特征的匹配、提纯等处理,获得像对的正确匹配点。试验测试了该方法的性能,并与KAZE、特征检测描述网络和深度局部特征模型进行了对比。结果表明,提出的方法对灰度、纹理、重叠率以及几何变化具有较强的适应性,且匹配效率较高,可为无人机视觉导航提供支撑。
-
单位信息工程大学地理空间信息学院