摘要
电学层析成像技术为多相流体中具有导电与非导电特性的介质分布的检测提供了一种有效的方法.但是,电学层析成像图像重建是一个非线性问题,传统线性化重建算法不能反映图像重建的非线性本质,使得重建图像的精度低。为解决这一问题,以电阻层析成像测试数据为基础,提出了一种基于深度学习的6层全连接深度网络图像重建算法,通过线性与非线性的交替迭代直接训练边界测量与场内介质分布之间的非线性映射关系。仿真与实验结果表明,6层全连接深度网络算法与传统采用的线性反投影、吉洪诺夫正则化等算法相比,图像重建结果具较高的重建精度与较好的可视化效果;但是,该算法对测试噪声的鲁棒性需要进一步提高。
-
单位太原工业学院; 天津大学