摘要
本文通过引入线性核的主成分分析和极端梯度提升(XGBoost)模型,给出了一种连续视听刺激下脑电(EEG)情感四分类识别算法。为体现适普性,文中使用传统的功率谱密度(PSD)作为脑电信号特征,并结合XGBoost学习得到weight指标下的特征重要性度量,然后使用线性核的主成分分析对经阈值选择的重要特征进行处理后送入XGBoost模型进行识别。通过实验分析,gamma频段在XGBoost模型识别的参与重要度明显高于其他频段;另外,从通道分布上看,中央、顶叶和右枕区相对于其他脑区发挥着较为重要的作用。本文算法在所有被试参与(SAP)和被试单独依赖(SSD)两种识别方案下的识别准确率分别达到78.4%和92.6%,相对其他文献的识别算法取得了较大的提升。本文提出的方案有助于改善视听激励下脑机情感系统的识别性能。
- 单位