摘要
针对直流微电网储能系统中全钒液流电池SOC难以精确估计的问题,提出一种基于郊狼算法(coyote optimization algorithm, COA)与灰狼算法(grey wolf optimization, GWO)的混合算法(hybrid COA with gwo, HCOAG)优化核极限学习机(kernelextremelearningmachine, KELM)的全钒液流电池SOC估计方法。首先将改进的郊狼算法(improved COA, ICOA)与简化操作的灰狼算法(simplified GWO, SGWO)采用正弦交叉策略融合组成HCOAG算法,利用HCOAG算法对KELM模型的参数进行寻优。然后利用基准函数对HCOAG算法进行测试,并与其他智能算法对比寻优能力。最后通过CEC-VRB-5 kW型号电池进行仿真和实验,验证了该估计方法的准确性与可行性。结果表明,所提HCOAG-KELM方法估计精度优于GWO-KELM、ICOA-KELM、KELM、扩展卡尔曼滤波(extended kalman filter, EKF)和无迹卡尔曼滤波(unscented kalman filter, UKF)算法模型,同时估计误差在2%之内,满足实际需求。
- 单位