摘要
为了使NURBS曲线更精确地拟合散乱数据点,提出了一种基于最小二乘渐进迭代逼近(least square progressive and iterative approximation,LSPIA)的NURBS曲线拟合优化算法.首先,确定一条初始NURBS曲线,利用LSPIA算法优化控制顶点;然后,分别优化数据点参数,拟合曲线的节点和权因子,每优化好一个变量,重新优化控制顶点;最后,经多次优化迭代得到高精度的NURBS拟合曲线.在优化每类变量时,为了避免被其他变量影响,保持其他变量不变.基于LSPIA的NURBS曲线拟合优化算法充分利用了LSPIA算法的优点,在迭代过程中,可以重复使用前一迭代步骤得到的控制顶点等数据,从而节省了运算时间.算法实例表明,该算法能获得一定保形效果.
- 单位