基于元学习的小样本数据生成算法

作者:王新哲*; 于泽沛; 时斌; 包致成; 钱华山; 赵永俊
来源:计算机系统应用, 2021, 30(09): 161-170.
DOI:10.15888/j.cnki.csa.008063

摘要

小样本数据存在信息不充足、不完备等问题,缺乏对总体的代表性,导致数据驱动的相关算法精度下降.本文针对小样本问题,提出基于元学习的生成式对抗网络算法进行小样本数据的数据生成.该算法目标是在各种数据生成任务上训练,确定模型最优初始化参数,从而仅使用较少的训练样本解决新的数据生成任务.本文利用水冷磁悬浮机组数据进行数据生成,实验表明,本算法能够在样本不足的条件下确定最优初始化参数,降低了对数据集大小的要求.本文同时进行了真实数据与生成数据混合的故障分类实验,验证了生成数据具有较好的真实性,对故障诊断分析具有较大的帮助.