摘要
接头是聚乙烯燃气管道容易出现危害性缺陷的薄弱环节,需对此薄弱区域进行定期检测,以确保聚乙烯燃气管道的安全运行。为提高聚乙烯燃气管道接头缺陷图像识别能力,提出了一种基于ResNet网络模型的改进型卷积神经网络识别算法。首先运用Laplacian算子、中值滤波等方式实现对PE燃气管道接头缺陷图像的预处理;然后,将dropout层和ELU函数加入在ResNet34网络模型中完成图像识别模型的构建;最后,采用改进的ResNet34网络模型通过试验对包含6种热熔缺陷类型的数据集进行训练和测试。试验结果表明,改进后的ResNet34网络模型对缺陷图像的训练正确率可达到97.3%,且拥有比原始的ResNet34网络模型和DenseNet网络模型更高的正确率,验证了此模型对于热熔接头缺陷图像识别的有效性。
-
单位甘肃省特种设备检验检测研究院; 兰州理工大学