摘要
单载波频域均衡(Single-Carrier Frequency-Domain Equalization, SC-FDE)是一种有效的抗码间干扰的算法,在无线通信系统中得到了广泛的应用。传统线性SC-FDE算法主要包括信道估计、噪声功率估计和信道均衡三个模块,其中每个模块都是单独优化的。为了联合优化这三个模块,本文提出了一种基于深度学习的SC-FDE算法。为了减少网络收敛所需的训练数据量,本文为SC-FDE中的三个模块分别设计了一个子网络。此外,本文还提出了一种训练机制,通过平等地对待每条无线路径,提高了所提算法的信道泛化能力。仿真结果表明,所提算法可以在较小的训练数据集下收敛,且具有鲁棒的信道泛化能力,与基于最小二乘信道估计和最小均方误差信道均衡的SC-FDE算法相比,所提算法具有更优的误码率性能。
- 单位