摘要
针对药剂师在药丸分拣过程中因疲劳而出错的问题,本文提出了一种基于改进EfficientDet的药丸检测算法。首先,引入Mosaic数据增强技术来提高采样数据的复杂度;然后,对主干网络EfficientNet进行改进优化,嵌入了CBMA模块的特征融合层,通过增强学习特征提高对药丸关键特征的提取能力;最后,对BiFPN特征融合部分增加了下层到上层的跨级数据流,通过充分利用多级数据,提高了不同层次的多尺度特征融合效率。实验表明,改进后的EfficientDet算法在测试中mAP值达到99.84%,相比较原始EfficientDet算法提高了0.65%,同时也比YOLOv3,YOLOv4和YOLOv4-Tiny等性能较好的目标检测网络具有更高的准确率和更好的实际应用性。
- 单位