摘要

利用2016年10月—2019年9月太原地区逐时能见度、相对湿度及颗粒物质量浓度等观测数据,研究分析了大气能见度与相对湿度及PM2.5质量浓度的关系,采用神经网络方法,构建了能见度与相对湿度及颗粒物质量浓度的非线性模型,并利用2019年10月—12月气象小时数据对该模型进行了检验。结果表明:(1)太原不同季节能见度日变化特征明显,春夏秋季能见度在06时左右最低,冬季在09时左右最低;从空间分布上看,太原地区能见度南北差异明显,北部能见度高于南部。(2)细颗粒物质量浓度与相对湿度对大气能见度变化都有明显影响。PM2.5质量浓度与能见度之间存在幂函数非线性关系,在40%≤相对湿度<60%的区段内相关性最强,PM2.5质量浓度与10 km能见度对应的阈值随相对湿度升高而减小,范围为5~103μg/m3。(3)采用神经网络方法构建能见度与相对湿度及颗粒物质量浓度的关系模型,相关系数为0.81。利用太原地区2019年10—12月逐时气象观测数据对模型进行检验,均方根误差为5.29 km,平均绝对百分误差为31.45%,轻微级霾情况下模拟能见度TS评分为0.86,误差呈现正态分布,误差小于4 km的比例达72.99%。该模型对研究太原地区能见度具有较高的参考价值。

  • 单位
    山西省气象科学研究所