摘要
以京津冀2020年318个地面监测站点的PM2.5数据为估算因子,构建了时空线性混合效应模型(STLME)和时空嵌套线性混合效应模型(STNLME),为AOD数据的补值研究提供了一种新方法.结果表明:在有AOD-PM2.5匹配数据的日期,上述两个模型估算精度相近,交叉验证后决定系数R2分别为0.868和0.874,均方根误差RMSE分别为0.112和0.109;在无AOD-PM2.5匹配数据的日期,嵌套模型估算精度明显高于非嵌套模型,交叉验证后决定系数R2分别为0.63和0.26.经过模型补值后,研究区监测站点所在网格AOD数据空间维有效比率从原始数据的44.35%提高到99.35%,时间维有效比率从87.94%提高到100%;同时,每个站点的年均AOD值都有明显提高,弥补了高PM2.5浓度条件下缺失的AOD数据,可以减少空气污染和健康研究中暴露评估的偏差.
- 单位