摘要

如何提取和选择时间序列的特征是时间序列分类领域两个重要的问题。该文提出MNOE(Mining Non-Overlap Episode)算法计算时间序列中的非重叠频繁模式,并将其作为时间序列特征。基于这些非重叠频繁模式,该文提出EGMAMC(Episode Generated Mixedmemory Aggregation Markov Chain)模型描述时间序列。根据似然比检验原理,从理论上推导出频繁模式在时间序列中出现的次数和EGMAMC模型是否能显著描述时间序列之间的关系;根据信息增益定义,选择能显著描述时间序列的频繁模式作为时间序列特征输入分类模型。在UCI(University of...

  • 单位
    卡耐基梅隆大学; 北京邮电大学; 网络与交换技术国家重点实验室