摘要

该文主要研究基于卷积神经网络(Convolutional Neural Networks,CNN)的海上目标探测背景分类方法.以CNN中的经典网络LeNet为例,基于IPIX雷达实测数据集,进行控制变量的模型训练,对分类准确率、训练速度、一维信号的二维特征图变化等进行分析,基于实测数据集验证了利用CNN在一维雷达回波信号中进行海杂波与噪声分类的可行性,并同步分析了数据预处理、单个样本序列长度、网络结构参数等影响因素对分类准确率的影响,并针对典型探测场景分类进行了验证.结果表明,LeNet卷积神经网络在海上探测背景区分方面,具有很高的分类准确率,并且数据预处理方式、单个样本序列长度对结果影响显著,而网络结构参数有一定的调节区间,在此区间内调整,影响不显著,所提方法在顺/逆浪向、高/低海况条件下杂波分类与杂噪分类方面具有很高的准确率.