摘要

针对标准粒子群算法优化过程中易早熟及后期收敛速度慢的缺点,提出了一种改进粒子群算法用于测试用例优先排序。首先,采用Tent映射初始化粒子种群,提高初始解质量;其次,给出了一种自适应调整因子公式,使调整因子与该粒子的适应度值大小相关,以更新粒子速度与位置信息;最后,对惰性粒子进行混沌搜索优化,提高种群的多样性,保证算法较好的收敛速度及寻优能力;实验结果表明,提出的改进方法在缺陷检测率、测试用例语句覆盖率和有效执行时间等方面均有优势。

  • 单位
    安徽大学江淮学院