摘要
利用Sentinel-2遥感卫星影像,结合遥感优势以光谱、指数、纹理等14种多种特征信息为输入,依托贝叶斯优化算法,设计了一种能自动获取最优超参数组合的BO-XGBoost方法,并将其成功应用于2021年阳澄湖蓝藻信息提取。结果表明:(1)通过贝叶斯优化算法获取最优超参数组合,进行训练得到BO-XGBoost蓝藻分类模型,其训练结果在测试集和训练集上表现效果良好,准确率高达96.07%;(2)将BO-XGBoost应用于参与样本集构建的影像,其蓝藻识别结果与人工解译成果对比,2种方法得到的蓝藻空间分布情况基本一致,交并比最低为41.31%;(3)为评价该分类模型在其他时相的适用性,选择其他时相影像数据进行蓝藻提取,BO-XGBoost与人工解译2种方法蓝藻空间分布情况基本一致,交并比最低为43.85%。