摘要
农牧交错带是农耕区与草原牧区的过渡带,土壤有机质(SOM)的精确估算与变化监测对碳库估算与农业生产具有重要研究意义。以东北典型农牧交错带为研究区,Landsat 8 OLI影像和ALOS 12.5m DEM为数据源,基于波段反射率、反射率对数、亮度指数与相关地形因子,分别利用多元线性逐步回归(MLSR)模型、随机森林(RF)模型和BP神经网络(BPNN)模型,构建农牧交错带SOM多光谱反演模型。结果表明:(1)根据重要性排序,选择Landsat8OLI第4波段的对数、第5波段、第6波段和亮度指数作为输入量,RF和BPNN模型的精度优于MLSR模型。(2)引入高程(E)与坡向变率(SOA)后,3种模型的预测精度提高,BPNN模型精度提高最多,R2提高了0.22,RMSE降低了0.40 g/kg。3种模型最优反演精度由高到低为:BPNN模型(R2=0.82,RMSE=1.4 g/kg)>RF模型(R2=0.71,RMSE=1.9 g/kg)>MLSR模型(R2=0.66,RMSE=8.8 g/kg)。研究结果可为农牧交错带SOM时空变化研究提供方法支撑。
- 单位