摘要

为解决UNet3+网络随深度加深出现大量融合冗余操作以至于模型训练时间过长而导致在道路提取中运用较少的问题,对UNet3+网络进行改进,通过删减UNet3+的网络层级使用Bottleneck模块替换原有网络中的卷积层,保留网络特征融合能力的同时降低网络复杂度,并引入混合注意力机制优化模型,构建了一个新的网络模型。将本文改进方法与几种典型的道路提取模型做对比。实验结果表明:(1)本文所提方法相较于Unet3+网络在Precision、Recall、IOU、ACC四个指标上分别提升了4.72%、2.46%、4.84%、2.01%,均优于对比算法;(2)对比几个经典的特征提取模型,改进的模型具有更好的识别效果,在道路提取的精度、连接性、完整性等方面均表型出优越性。