摘要

为了直接利用神经网络从采集的全寿命振动信号中自动提取特征信息,避免对人工提取特征的依赖,提出了一种基于卷积门控循环单元(convolutional gated recurrent unit,简称ConvGRU)注意力的剩余寿命预测方法。首先,对于采集的设备振动信号预处理,输入ConvGRU注意力模型,ConvGRU通过卷积神经网络(convolutional neural networks,简称CNN)提取设备状态的空间局部特征,门控循环神经单元(gate recurrent unit,简称GRU)提取时序特征信息,从而有效提取设备状态特征;其次,利用注意力机制对特征信息分配不同的权重;然后,进行中间网络层特征输出的可视化实验,验证了本研究方法特征提取的有效性;最后,进行了2个机械设备数据集PHM2012轴承数据集和NASA发动机数据集的实验,并与已有方法进行对比。实验结果表明,笔者提出的基于ConvGRU注意力的剩余寿命预测方法预测准确性更好,并具有较好的泛化性。

全文