摘要
多任务粒子群优化算法(multi-task particle swarm ptimization, MTPSO)通过知识迁移学习,具有快速收敛能力,广泛应用于求解多任务多目标优化问题.然而, MTPSO难以根据种群进化状态自适应调整优化过程,容易陷入局部最优,收敛性能较差.针对此问题,利用强化学习的自我进化与预测能力,提出一种基于Q学习的多任务多目标粒子群优化算法(QM2PSO).首先,设计粒子群参数动态更新方法,利用Q学习方法在线更新粒子群算法的惯性权重和加速度参数,提高当前粒子收敛到Pareto前沿的能力;其次,提出基于柯西分布的突变搜索策略,通过全局和局部交替搜索多任务最优解,避免算法陷入局部最优;最后,设计基于正向迁移准则的知识迁移方法,采用Q学习方法更新知识迁移率,改善知识负迁移现象.与已有经典算法的对比实验结果表明所提出的QM2PSO算法具有更优越的收敛性.
- 单位