摘要
深度学习能够提高光学遥感图像场景分类的准确率和效率,但光学遥感图像语义丰富,部分场景仍存在易误分类的情况,同时由网络模型规模扩大带来的硬件要求过高、时间成本消耗过大等问题制约着深度学习网络模型的推广应用。为此,提出一种基于轻量化网络模型的光学遥感图像场景分类方法。通过EfficientNet网络提取图像特征,对图像特征进行复合提取以生成语义信息更丰富的新特征,利用多个子分类器构建集成学习模块解析新特征得到预分类结果,集成加权预分类结果以获得最终的分类结果。在AID和NWPU-RESISC45数据集上的实验结果表明,即使只训练20%的数据样本,该方法也能分别达到94.32%和93.36%的准确率,相对D-CNNs、CNN-CapsNet等方法,所提方法对易误分类场景有更好的分类效果,且参数量和浮点运算量大幅减少。
-
单位信息工程大学