摘要

在网络社交平台海量的信息文本中含有许多垃圾文本,这些文本的广泛散布影响了人们正常社交。为此,提出一种垃圾文本过滤模型。通过BERT模型提取文本的句编码,采用B-Feature方法对句编码进行特征构造,并根据文本与所得特征之间的联系进一步将该特征构造为特征矩阵,运用BP神经网络分类器对特征矩阵进行处理,检测出垃圾文本并进行过滤。实验结果表明,该模型在长、中、短文本数据集上的准确率较TFIDF-BP模型分别提高7.8%、3.8%和11.7%,在中、短文本数据集上的准确率较朴素贝叶斯模型分别提高2.1%和13.7%,能有效对垃圾文本进行分类和过滤。

全文