摘要

作为一种可再生碳源,5-羟甲基糠醛(HMF)是一种重要的生物质平台分子,已被广泛用于制造医药前体、单体和精细化学品.HMF的电催化氧化反应(HMFOR)是一种在常温常压下实现HMF向2,5-呋喃二甲酸(FDCA)转化的高效绿色过程.但与传统的析氧反应(OER)不同,HMFOR相对复杂,需要经过6个电子的转移过程,分别涉及羟基和醛基的氧化.研究发现,NiO对羟基氧化具有较高的反应活性,但HMFOR反应途径受溶液pH值的影响,醛基以二元醇的形式优先在碱性溶液中被吸附和活化,从而导致反应活性较低.本文引入了导电聚合物聚吡咯(PPy),通过X射线光电子能谱(XPS)、原位红外光谱(FTIR)、高效液相色谱(HPLC)、密度泛函理论计算(DFT)、原位电化学石英晶体微天平(EQCM)等表征技术研究了PPy在引入NiO后对HMFOR的影响和催化性能差异的原因.X射线衍射结果表明,PPy引入的聚合过程没有破坏NiO的晶体结构,而FTIR显示出PPy分子中吡咯环的C-H弯曲振动及芳香胺分子中N-H的伸缩振动,说明PPy成功引入NiO表面.高分辨透射电镜结果表明,PPy以5 nm平均厚度薄层覆盖在NiO表面.此外,XPS结果证实了Ni,O,C和N元素的存在,吡咯氮(-NH-)物种在NiO-PPy电催化剂中占主导地位,而Ni 2p3/2和O 1s的XPS谱中NiO和NiO-PPy且有相似的电子结构,说明PPy的引入并没有改变NiO的电子结构.线性扫描伏安曲线和电化学活性面积测试结果表明,PPy的引入显著提高了HMFOR的电流密度和NiO的内在活性.同时,NiO-PPy比NiO具有更低的Tafel斜率,表明PPy会提高HMFOR的反应动力学,加速HMF转化.电解测试中高效液相色谱分析结果表明,在前0.5 h内NiO-PPy催化剂上HMF转化率高于NiO催化剂,说明PPy的引入加速了HMF的转化.此外,分析中间产物发现,NiO催化剂上的HMFOR中间体主要为5-羟甲基呋喃-2-羧酸,而NiO-PPy上主要为2,5-二甲酰基呋喃.周期性测试结果表明,NiO-PPy表现出较高的HMF转化率和产物选择性,且具有较好的稳定性.运用开路电位和电化学石英晶体微天平检测了HMF分子在NiO和NiO-PPy上的吸附能力.结果表明,PPy涂层明显增强了HMF分子在NiO上的吸附能力.采用表面增强红外吸收光谱研究了电催化剂表面重要中间体的吸附行为.结果表明,NiO上HMFOR路径主要为HMFCA路径,而在NiO-PPy上新增2,5-二甲酰基呋喃,表明HMF分子的羟基和醛基同时在NiO-PPy表面被激活,进一步说明PPy的引入会选择性地提升羟基氧化的反应性能,进而提升了HMFOR活性.采用密度泛函理论研究了PPy的作用,结果表明正电性PPy分子会吸引电负性的羟基,缩短Ni与醛基之间的键长,降低醛基的反应活性,调节HMFOR反应途径,进而获得更高的HMFOR性能.综上所述,本文通过导电聚合物PPy修饰调控了电极界面微环境以及表面电性,从而调控了HMF分子的吸附构型和反应路径,获得更高的HMF电催化氧化反应活性.本文为HMF氧化高效电催化剂的设计提供了新的思路,并为HMF电催化氧化应用化研究提供借鉴.