设G=(V,E)为一个无孤立点的图.如果一个双值函数f:V→{0,1}对任意点v∈V,均有f(N(v))≥1成立,则称f为图G的一个全控制函数.图G的全控制数定义为γt(G)=min{f(V)|f为图G的一个全控制函数}.该文应用数学归纳法和分类讨论法,得到了以路Pm、圈Cm、完全图Km为基图的广义Sierpiński网络的全控制数.