摘要
农业生物质能已逐步成为我国现代工业主要清洁能源之一。利用激光诱导击穿光谱(LIBS)技术实现秸秆炭热值(CV)精准预测。针对传统X自变量特征提取方法在LIBS定量分析秸秆炭CV过程中缺陷问题,提出了一种XY双变量特征提取法。研究首先分析了秸秆炭CV与各元素含量之间相关性,选取与CV相关性极显著(p<0.01)的Y型特征变量,其主要获取了以炭单质、芳香环和羧基等形式存在的C, O, H和Na元素的分析线展宽波段;同时通过筛选偏最小二乘回归(PLSR)模型回归系数阈值获取与CV相关的X型特征变量,当阈值为4×10-5时模型交互验证均方根误差(RMSECV)降至最低值,其所对应的变量主要为参与农作物生理生长的Ca, Cr, Mg和K元素的分析线光谱线。基于所提取XY双特征变量构建遗传算法优化及自适应增强的人工神经网络(GA-BP-Adaboost)模型,当变异概率、交叉概率和相对误差率(RE)分别设为0.1, 0.95和0.01时,最优模型预测平均相对误差(AREP)和预测相对标准误差(RSDP)分别为2.39%和2.97%,相比于XY-PLSR模型效果分别较低了0.82%和0.91%。结果表明:XY双变量特征提取法结合GA-BP-Adaboost模型可以为生物质炭在工业使用过程中CV精确定量预测分析提供方法依据。
- 单位