摘要
船舶自动识别系统(automatic identification system,AIS)数据可以反映出船舶的航行状态特征,并且实时精确地预测船舶未来航行轨迹,能及时避免一些海上交通事故的发生,具有重要的现实意义。提出了一种根据船舶AIS数据训练混合深度学习网络预测船舶航行轨迹的方法。根据船舶AIS数据的航行轨迹特征,构建了基于卷积神经网络(convalutional neural network,CNN)和双向长短期记忆(bidirectional long short term memory,Bi-LSTM)网络的船舶航行轨迹预测混合模型。CNN-Bi-LSTM模型根据船舶AIS数据进行训练,形成期望的输入-输出映射关系,进而预测船舶未来的航行轨迹。实验结果表明,对比传统的预测方法,CNN-Bi-LSTM不仅能更加准确有效地处理序列数据,预测船舶航行轨迹的精确度也更高。
-
单位电子工程学院; 天津理工大学