摘要

针对反映锂电池寿命的趋势性特征自学习与电池剩余寿命预测问题,提出了基于降噪自编码器(denoising auto-encoder,DAE)与混合趋势粒子滤波(hybrid trend particle filter,HTPF)的电池剩余寿命预测方法。利用电池使用前期的信号特征训练DAE,然后将使用中后期的电池信号特征输入DAE中,并提取重构误差。另外,利用HTPF方法对电池生命周期内的信号特征进行分析,建立自适应状态方程。分析结果表明,该方法能有效地对锂电池的性能退化趋势性特征进行自提取,从而有效地减少人为因素的干扰,同时相比于传统粒子滤波(particle filter,PF),HTPF对电池剩余寿命预测精度更高。